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Abstract

An overview of various numerical techniques used to determine the spatio-temporal character of instabilities in fluid
flows is given. The advantageous features of various previously known individual techniques are discussed and a prac-
tical procedure combining them is suggested for a specific task of determining the complete boundary between linearly
convectively and absolutely unstable regimes in a multi-parameter space in problems with a fully numerical dispersion
relation. Special attention is paid to aspects of automatization of computations as this is a crucial condition for their
efficiency. The suggested procedure is successfully used and is shown to provide a high degree of automatism in the
physical example of non-Boussinesq mixed convection in a vertical channel. This example comprises most of the major
numerical difficulties found in various spatio-temporal instability studies of two-dimensional fluid flows which previ-
ously could not be handled without frequent human intervention and visual inspection of intermediate results. This
paper focuses on the general numerical aspects of the computations leaving the detailed discussion of the obtained phys-
ical results for a separate publication.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Spatio-temporal convective and absolute instabilities in fluid flows have received increased attention be-
cause of their relevance to flow control [1,2] and, ultimately, transition to turbulence [3]. These concepts
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relate to the asymptotic behavior at large time of an initially localized disturbance envelope. If this distur-
bance decays with time everywhere then the flow is referred to as absolutely stable. If it grows when ob-
served with respect to some steadily moving coordinate system, but decay at any stationary location
then such a flow is called convectively unstable. Finally, if the growing disturbance is observed at a station-
ary frame the instability is referred to as absolute. Equivalently, the instability is absolute if the edges of the
localized disturbance envelope with growing amplitude move in the opposite directions when considered
with respect to a stationary coordinate system, and it is convective if the edges move in the same direction.
The distinction between convective and absolute instabilities is well defined only when the Galilean symme-
try with respect to uniform translation of a coordinate system is broken so that the stationary (sometimes
also called laboratory) system can be distinguished from the others. In this paper we assume that the Gal-
ilean symmetry is broken by the no-slip boundary conditions for viscous fluid: the frame with respect to
which solid walls limiting the flow have zero velocity is taken to be stationary. Therefore if the asymptotic
instability resulting from the initially localized disturbance is observed at any point which is stationary with
respect to this system we will refer to this situation as absolutely unstable.

The character of instability is determined by the properties of a complex dispersion relation correspond-
ing to a particular flow. The complete theoretical background of linear convective and absolute instabilities
as applied to fluid flows can be found in earlier literature [1,4–6] and here we only introduce definitions and
concepts relevant from the numerical point of view. An essential part of this investigation is the asymptotic
analysis of the Fourier integrals arising in a formal solution of linearized equations describing evolution of
infinitesimal disturbances. Such asymptotic analysis typically involves applications of the Briggs� [7] or
steepest descent methods which, if used consistently, lead to identical results [8]. Although well understood
by now, both of these techniques require a thorough implementation in order to guarantee the validity of
conclusions made about the character of instability in each individual flow situation [5]. This inevitably in-
volves investigation of a global topography of the disturbance complex amplification rate r = rR + irI over
the space of a complex wavenumber a = aR + iaI which are related through the problem�s dispersion rela-
tion D(r,a) = 0.1

When the dispersion relation is resolved with respect to r = r(a) for real a the analysis is called temporal.
Usually, the dispersion relation is multivalued and therefore multiple images of the real a axis are obtained.
Consistent with definitions given in [4], we will call them temporal branches of the dispersion relation. How-
ever for convenience of presentation we will call images of any straight line path in the complex wavenum-
ber plane given by aI = a, where a is an arbitrary (a 6¼ 0 in general) real number, temporal branches ri(a),
i = 1,2,. . ., as well.

Similarly, if the dispersion relation is resolved with respect to a = a(r) and r is taken to be imaginary
(i.e., real disturbance frequency) the analysis is called spatial. We will call images of any straight line
rR = b in the complex r plane, where b is an arbitrary real number, spatial contours or spatial branches
of the dispersion relation ai(r), i = 1,2,. . . Intersection of the spatial contours (branches) in the complex
wavenumber plane at a = as will be called a spatial branch point. Although general theory is not restricted
to collision of two spatial branches only, this is the most common situation. In this case
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and as is the saddle point of the second order of the surface r(a). It is formed by intersecting level curves
rR ¼ rR

s or rI ¼ rI
s, where rR

s ¼ rRðasÞ is the absolute amplification rate, xR
s ¼ �rI

s ¼ �rIðasÞ is the
ing the amplification rate r instead of complex frequency x = ir in the context of spatio-temporal instabilities is somewhat
entional. We are doing this in order to be consistent with notation adopted in earlier publications [9,10] discussing the stability
-Boussinesq mixed convection flow which will provide most of physical examples in the present work.
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absolute frequency and the saddle point wavenumber as is called absolute wavenumber. The necessary con-
dition for absolute instability is rR

s > 0, but according to the Briggs criterion [7] it is not sufficient unless the
saddle point is the genuine pinch point formed by the spatial branches originating in different (upper and
lower) halves of the complex a plane for sufficiently large values of b. Even in the topologically simplest case
when a physical flow is two-dimensional and unbounded and uniform in one spatial direction, the search
for pinch points is computationally very expensive as noted, for example, in [2,3,11].

As mentioned above, the theory of spatio-temporal instabilities requires very careful consideration of the
global topography associated with the complex dispersion relation on a case-by-case basis. For example,
when investigating the instability character of a boundary layer flow Lingwood [8] dedicates twelve pages
of discussion to determine it rigorously at a single set of physical governing parameters. Accurate compu-
tation of a complete convective/absolute instability boundary (CAIB) in a multi-parameter space of a real-
istic physical problem may require up to several thousands of such points and therefore is a very
challenging numerical task. As a consequence although the number of relevant publications has been grow-
ing rapidly in the past years (see short review in Section 2), papers presenting CAIBs are generally restricted
to relatively narrow ranges of physical parameters over which the transition has been detected (see, for
example, [2,3,12–19]).

Apart from the well known difficulty of considering the global r(a)-topography, another technical prob-
lem arises when CAIB lies sufficiently far away from the linear instability boundary as, for example, in sys-
tems with a relatively strong through-flow. In this case the saddle points of a dispersion relation may be
located far away from the real a axis. The temporal stability analysis still identifies the temporally unstable
branches rRjaI¼0 > 0 reliably, but distinguishing the saddle points corresponding to these branches from
those of stable ones in a complex wavenumber plane becomes a very challenging task. This is so because
the dispersion relation is known only numerically. While the theory takes the fact that its roots can be easily
distinguished and tracked for granted, this is rarely the case in practice. The roots of the dispersion relation
are only known as a relatively large set of discrete eigenvalues of the linearized problem and it is not clear
which one of the eigenvalues leads to the required saddle point when a wavenumber changes in the complex
plane. The eigenvalue ordering enforced by a particular numerical solver is typically different for real and
complex values of wavenumber a and is not known a priori. As a consequence, many previous investiga-
tions have been limited to flows for which the order of leading eigenvalues between the real a axis and a
saddle point either does not change [3,11,13,17,20] or is known analytically [14,18]. Because of the compu-
tational complexity, very rarely has the attempt been made to analyze the saddle points formed by all lead-
ing branches and then to choose only the relevant ones [12,21]. Recently, the aspect of eigenvalue
identification has been addressed in [10]. The author showed that the problem of tracking the required
branch of a numerical dispersion relation (NDR) might become so severe that reliable computations of
CAIB would not be possible (see also [16]). Consequently, one of the major goals of this work is to suggest
a procedure enabling automatic identification of the branches of NDR.

Section 2 reviews a large number of recent numerical spatio-temporal instability studies. The list of ref-
erences is far from complete, yet the review provides a clear idea of contemporary views on numerical
aspects of spatio-temporal analysis. Despite the ever-growing interest to spatio-temporal instability studies,
to the best of the author�s knowledge, a comparative analysis of used numerical techniques has not been
presented in literature to date: relevant knowledge remains scattered across dozens of individual papers.
Therefore bringing this knowledge together in a usable compact form is another major goal of this paper.
Common difficulties are identified and the efficient ways of resolving them are discussed. In the light of this
review a more automated computational procedure emerges that combines the most efficient elements of
previously known techniques with a more reliable tracking of the branches of NDR. Such a procedure
is discussed in Section 3. Since the suggested procedure is based on selected elements of the techniques
developed elsewhere the reader is referred to the original works for rigorous proofs of their validity. Their
qualitative interpretations are used here to explain the improved performance of the combined procedure
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designed specifically for searching convective/absolute instability transition. However a few instances where
no complete theory is yet available to rigorously justify the proposed steps are flagged in Section 3.3. In
these cases the success of the suggested procedure is demonstrated in a particular example and qualitative
conjectures are given explaining this success.

This work was initially motivated by the author�s research of spatio-temporal instabilities arising in
mixed convection flows of non-Boussinesq fluid. None of the individual techniques previously reported
in literature were able to overcome all the numerical difficulties encountered in CAIB computations for
such flows efficiently. Therefore the procedure presented in this paper was developed and was successfully
applied to produce the required physical results. These computations provided most of the illustrative
examples in the current paper. The physical set up and governing equations for this example problem
are given in [9]. In brief, the undisturbed two-dimensional parallel flow whose stability is investigated is dri-
ven by the pressure gradient applied along the channel and by the buoyancy force caused by the nonlinear
density variation due to the cross-channel temperature gradient. The flow is governed by four major phys-
ical parameters: the Reynolds number Re, the Grashof number Gr, the Prandtl number Pr and the non-
dimensional temperature difference � between the walls which characterize the applied pressure gradient,
the buoyancy force, the relative importance of thermal and viscous forces and the degree of nonlinearity
of the fluid�s transport properties, respectively. In the discussed example, the Prandtl number is fixed to
0.71 while the rest of the governing parameters are chosen to illustrate clearly the most general difficulties
arising in computations related to spatio-temporal stability analysis. The corresponding linear disturbance
problem was formulated, and comprehensive temporal stability analysis was performed in [9] and selected
spatio-temporal instability results obtained using the current algorithm were reported in [22–24]. For this
reason only the resulting NDR (2) has been used here. The suggested procedure for searching CAIB is
shown to cope well with many technical difficulties associated with the complexity of this problem�s
NDR such as the presence of multiple physical instability modes and multiple saddle points. The procedure
is also offers a higher degree of automatization than that achieved in similar computations before. This
enabled the author to obtain a rich spectrum of remarkable physical results concerning the nature of insta-
bilities in non-Boussinesq mixed convection for a very wide range of governing physical parameters. Nev-
ertheless here we focus only on the numerical aspects of the analysis. The comprehensive physical
interpretation of the results will be the subject of a separate full length publication.

Finally, the example used here is concerned with two-dimensional flow with one unbounded direction
([x,y] = [0,1] · (�1,1)). Upon applying the Fourier transform in this direction the dispersion relation
which depends on a single wavenumber is obtained. Thus the complete numerical procedure is developed
for this situation. Many of the major steps of the algorithm can be generalized for three-dimensional flows
with two unbounded directions as those considered in [17,25–27]. Yet three-dimensional flows offer a much
wider variety of situations which may result in technical difficulties not present in two-dimensional studies
and therefore not discussed in the current paper. It might or might not be possible to develop a reliable fully
automatic algorithm for searching convective/absolute instability transition in three-dimensional flows.
However the answer to this question is presently unclear and should, perhaps, be attempted after a much
larger number of three-dimensional studies is completed than that reported in literature to date in order to
form a firm ground for the required case study.
2. Brief overview of numerical procedures

Analysis of the nature of spatio-temporal instability includes a number of steps each involving a signif-
icant numerical component. Firstly, the original physical problem is linearized about some known (basic)
solution and the corresponding dispersion relation between the complex amplification rate of infinitesimal
disturbances and their complex wavenumber is established as the function of the physical governing
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parameters. Except rare cases when the basic solution is simple and known analytically [14,15,18] such a
dispersion relation can only be obtained numerically due to the complexity of the physical problem
[3,28] using temporal or spatial linear stability analyses. Both types of analyses lead to identical conclusions
about the linear instability of a basic solution, but their numerical implementation differs significantly. This
difference stems out from the fact that the original governing partial differential equations (such as the Na-
vier–Stokes equations) are first order in time and at least second order in space. Because of this, the Fourier
transforms of the disturbance equations result in nonlinear (at least quadratic) terms in wavenumber while
the temporal amplification rate enters them linearly. Consequently, temporal stability analysis results in a
linear eigenvalue problem for the disturbance amplification rate while its spatial counterpart always leads to
a nonlinear eigenvalue problem for the disturbance wavenumber.

Both types of eigenvalue problems can be accurately solved using the shooting technique. This approach
was successfully used in a number of spatio-temporal instability studies [12,13,16,18,28]. Nevertheless such
approach has two major disadvantages. First, finding each eigenvalue requires full integration of the line-
arized disturbance equations. This might become a challenging task on its own especially when integration
has to be performed along the path in a complex plane and analyticity properties of the solution have to be
checked thoroughly. This was required, for example, in [16]. The computational cost of finding eigenvalues
in such a way is high and the method might become impractical if the global stability picture in a multi-
parameter space is sought. Another serious drawback is that the shooting technique requires a reasonably
accurate initial guess in order to converge to a necessary eigenvalue. For example, previously known results
from temporal stability studies [29] and direct numerical simulation results from [30] had to be used in [16]
to find spatial eigenvalues by the shooting method. In another example Krizhevsky et al. [13] resorted to
tracing the argument of a complex function corresponding to the dispersion relation along a sequence of
closed contours in the a plane in order to determine the initial guess. In general, the information about
the eigenvalue spectrum is not known a priori and thus a reliable application of the shooting method might
become difficult. This method fails completely when the eigenvalue spectrum is dense because then the
shooting procedure jumps from one eigenvalue to another as was observed in [16] and convergence cannot
be achieved.

Alternatively, a set of all leading eigenvalues can be computed in a single run if the disturbance equations
are discretised and written as a matrix eigenvalue problem. In contrast to a shooting method where the effi-
ciency and accuracy of computations depend strongly on the availability of a reliable initial guess and the
implementation of the integration algorithm [16], solution of the algebraic eigenvalue problem is a generic
procedure [3,11] whose highly optimized implementations are readily available in various professional
mathematical libraries (e.g., IMSL, NAG, LAPACK) and for various computer architectures including
parallel. The only drawback of this approach is that it might produce spurious eigenvalues resulting from
the specifics of a discretization method used to approximate the equations and the boundary conditions.
Fortunately, the spurious eigenvalues are relatively easy to detect because of their strong dependence on
the discretization parameters. For example, recomputing the eigenvalue spectrum with an extra grid point
leaves physical eigenvalues practically unchanged while spurious eigenvalues change by more than an order
of magnitude. Since solving a linear algebraic eigenvalue problem is a routine task, and efficiency of the
existing standard algorithms is sufficiently high, filtering the spurious eigenvalues out by recomputing
the problem with slightly changed discretization parameters has become a common practice in stability
analyses, see for example [19,21].

As has been mentioned previously, in the case of temporal instability analysis, the linearisation and dis-
cretization of the Navier–Stokes-type equations leads to an algebraic eigenvalue problem of the form
Aw ¼ rBw; ð2Þ
where A and B are matrix operators resulting from discretization of the governing equations, w is the dis-
turbance eigen-solution and the eigenvalue r = �ix is the complex amplification rate (x is the complex
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frequency). Operators A and B in general are nonlinear functions of physical parameters and wavenumber
a. Depending on the boundary conditions, the nonlinearity in wavenumber can be high order polynomial
[31,32] or even transcendental as in an example considered in [4]. When the physical parameters and wave-
number are fixed, Eq. (2) represents a linear generalized matrix eigenvalue problem which can be solved
using standard computational algorithms (e.g. QZ).

The situation is more complicated in the case of spatial stability analysis. Even in the simplest viscous
flow situation the matrix eigenvalue problem resulting from the linearized Navier–Stokes equations written
in primitive variables is quadratic in wavenumber a
Cw ¼ aDwþ a2Ew. ð3Þ

It is typically solved using the companion matrix technique [3,11,19,21,33,34] in which the nonlinear eigen-
value problem is linearized by augmenting the eigenvector to w 0 = (w, aw)T so that the problem becomes a
standard one
C 0

0 I

� �
w

aw

� �
¼ a

D E

I 0

� �
w

aw

� �
; ð4Þ
where I is the identity matrix. The obvious disadvantage of such an approach is that the size of the problem
essentially doubles. As a result the computational cost and the number of spurious eigenvalues increases
substantially in comparison with the similar problem (2) arising in temporal stability analysis. For this rea-
son it is advantageous to perform numerical spatio-temporal instability analysis based on temporal insta-
bility calculations i.e., for the dispersion relation of the form r = r(a) rather than a = a(r) (see
[4,35,31,26,27]). This is especially so when the complete CAIB in multi-parameter space including several
hundreds of individual points is required or when the dispersion relation is transcendental in a so that
the companion matrix technique is not applicable [4].

Once the problem�s NDR is established by using one of the techniques described above, the convective or
absolute nature of instability is determined in two major steps. The first is locating the spatial branch point
(or, equivalently, the temporal saddle point) as of the dispersion relation in a complex wavenumber plane at
which Eq. (1) are satisfied and examine the absolute growth rate rR(as) (r

R(as) < 0 means stability or con-
vective instability, rR(as) > 0 may correspond to absolute instability). The second important step is check-
ing if the so-called pinching condition is satisfied for this saddle point, see [7,6].

This may be done in a number of ways. The method which follows directly from Briggs [7] theory which is
summarized in [6] in the context of fluid flows essentially uses an approach based on the spatial analysis. It
initially fixes rR ¼ rR

0 , where r
R
0 > maxaI¼0ðrRðaÞÞ. This corresponds to a vertical line in a complex r-plane.

Then the multiple images (spatial contours) of this path are found in the complex wavenumber space using
shooting or companion matrix technique. As the value of rR is gradually decreased (by translating the initial
vertical line rR ¼ rR

0 towards rR = 0) the corresponding images in a wavenumber plane approach each other
and eventually collide forming a spatial branch point where or

oa ¼ 0 (saddle point of the r(a) surface). As dis-
cussed in [7,6] if the two colliding contours originate in different halves of the a-plane then they correspond to
downstream and upstream spatial instabilities. Their collision means that in such a regime instability will be
observed in both directions (i.e., will be absolute) provided that the absolute amplification rate rR(as) > 0. If
collision occurs between the spatial branches originating in the same half of the a plane then spatial insta-
bility is observed either upstream or downstream and the spatio-temporal instability can only be convective.

While topographically straightforward, this approach relies in large measure on the efficiency of solving
the problem dispersion relation with respect to wavenumber a for a fixed complex amplification rate r
[16,21]. As has been discussed above, it is computationally more expensive and less convenient than finding
r as a function of a. Besides locating the branch point, this approach requires identifying and tracking the
colliding spatial branches. This has been done by computing and plotting a set of contour lines rR = const.
over the complex wavenumber plane with subsequent visual analysis of the obtained global picture [13,18].
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Thus the procedure involves an essential interactive component which makes it somewhat subjective and
inefficient because the computational process is not fully automatic.

Since the branch points of the spatial dispersion relation a(r) correspond to the saddle points of the tem-
poral dispersion relation r(a), a number of spatio-temporal instability studies have used criterion (1) to lo-
cate the branch (saddle) points and then determine the character of the instabilities. Checking this criterion
involves computing the temporal amplification rate as a function of the wavenumber which is generally
more convenient than tracking the spatial branches in the approach described above. The actual location
of the saddle point can be found iteratively using Newton-type methods to find the root of Eq. (1)
[2,16,17,36]. Such an approach is accurate and efficient because of the relatively quick convergence. It is
essentially local in its nature as it only requires the values of r in the vicinity of a current point to approx-
imate the local derivatives and form a Jacobian used by Newton iterations. It does not require visual con-
trol of the intermediate results because checking the zero derivative condition can be done automatically
within a numerical code. Nevertheless this method has its own problems. Firstly, the convergence of iter-
ations might be slow or the method might even diverge if the initial guess is chosen far away from the saddle
point. To overcome this difficulty Yin et al. [2] and Krizhevsky et al. [13] had to determine an initial guess
from a visual inspection of the x (r in our notation) contours on a coarse grid in complex wavenumber
plane. Secondly, the analytical expression for r(a) is rarely known so that the dispersion relation and its
derivatives must be approximated numerically, say, using finite differences. Application of Newton-type
iterations to find zero of a derivative necessarily involves the Jacobian formed by the second derivatives
which also have to be approximated numerically. This makes an iterative search of a saddle point vulner-
able to any singularities of the dispersion relation. A typical example of singularity associated with ‘‘collid-
ing’’ (multiple) eigenvalues of the linearized problem will be considered in detail in Section 3. Lastly, while
the locality of the method is an advantage at the stage of the iterative search, the procedure does not guar-
antee that the found saddle point satisfies the pinching condition, i.e., that it is formed by spatial branches
originating in different halves of the wavenumber plane. In fact, many of the saddle points of the dispersion
relation may not be pinch points and may not determine transition to absolute instability. For example, an
infinite number of saddle points were found in the studies of Eady model by [5] and none of them contrib-
uted to absolute instability. A similar situation was detected in [12] for axisymmetric jets and in [28] for
mixed convection boundary layers. Therefore the relevance of a computed saddle point to absolute insta-
bility is a very delicate issue for most physical flows. In order to verify that the saddle point is a pinch point
one has to reconstruct the complete r(a) surface around the saddle point and check that the rR(a) = const.
contour lines (spatial branches of the dispersion relation) forming the saddle point belong to the different
halves of the complex a plane for sufficiently large values of rR [12,37]. This is computationally a very
demanding procedure. For this reason, frequently the global pinching condition is checked only for a se-
lected set of parameters assuming that the topography remains qualitatively the same for a complete
parameter range [17]. Besides that, the analysis of the so-obtained global picture has to be done visually
[14–16,19,21,28] which prevents full automatization of computations.

A different procedure which allows checking the pinching criterion has been suggested by Kupfer et al.
[4]. After realizing that in many physical problems it is easier to compute r as a function of a they developed
a method of locating the pinch points by mapping from the a into r plane. The computational scenario in
this case is very similar to that of a temporal instability analysis. Namely, the imaginary part of the wave-
number, aI, is kept fixed while r is computed for a range of aR. Then the corresponding image in the r plane
is constructed. It has been shown that the branch (saddle) point of a dispersion relation corresponds to a
cusp singularity of the image of the aI = const. contour in the r plane. Thus the saddle point is found by
varying aI and inspecting the image in the r plane until the cusp formation is detected. Unfortunately, it is
difficult to do this accurately because the decision whether the cusp has been formed has to be made based
on a visual inspection of the map [3,11,27]. Consequently, the resulting conclusion is somewhat subjective
and cannot be made without human intervention. For this reason the procedure suggested in [4] seems to
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have little advantage over the automatic saddle point search using the iterative procedure outlined above.
In fact, Yeo et al. [11] had to use the ‘‘zero group-velocity’’ criterion ox

oa ¼ 0 in order to find the branch point
accurately after it has been roughly estimated using the cusp criterion. On the other hand, the procedure of
Kupfer et al. [4] offers a computationally inexpensive way of checking whether the found saddle point is a
pinch point without constructing a global picture. Once the saddle point as (and thus the cusp point) is lo-
cated, a set of eigenvalues of a linearized problem are computed for real wavenumbers: r0j ¼ rjðaÞjaI¼0;
j ¼ 1; 2; . . .. Then according to the arguments developed in [4] one only has to count the number of times
the cusp point in the r plane is covered by the images of r0i. The cusp corresponds to a pinch point only if it
is covered an odd number of times (most common situation corresponds to a cusp point covered once, see,
for example, [3,11]).2 Apart from the low cost of such computations the procedure can be made fully auto-
matic as the analysis is essentially reduced to checking the values of rR

0j for r
I
0j equal to that at a saddle

point. This is discussed in detail in Section 3.2.
As seen from the above review, although a general theory of convective and absolute instabilities is now-

adays well understood, determining a complete transition boundary between convective and absolute insta-
bilities remains a challenging computational task. Researchers have had to rely on their experience in
developing individual numerical approaches for each problem studied. The major difficulty adversely affect-
ing the efficiency of such computations is associated with a necessity of subjective visual inspection of the
results by a human. In Section 3 we discuss an algorithm which combines the advantageous features of sev-
eral previously known approaches with an eigenvalue tracking procedure which enables a significantly
higher degree of automatization than in the studies reported to date.
3. Numerical search of convective/absolute instability boundary

3.1. Saddle point search and Riemann sheet tracking

As follows from discussion in Section 2, the core of the spatio-temporal instability consideration is the
analysis of the problem�s numerical dispersion relation. Upon discretization of disturbance equations, it is
more convenient and numerically advantageous to represent it in a form of a temporal linear generalized
eigenvalue problem (2) [4,31] because an equivalent spatial eigenvalue problem is always nonlinear and its
solution is computationally more demanding. Initially, all physical governing parameters entering opera-
tors A and B are fixed to some values and all leading eigenvalues r are computed using a standard (e.g.,
QZ) algorithm for a range of real wavenumbers a. Theoretically, this range should include all real values
of a from minus to plus infinity. In practice though it is often shown that the problem�s eigenvalue spectrum
is symmetric and only eigenvalues for a > 0 need to be computed. It is also possible to prove for some prob-
lems that a basic flow is stable for the large values of a ! 1, for example, because of a strong stabilizing
influence of surface tension or viscosity on fine flow structures which correspond to large disturbance wave-
numbers. Therefore only the range 0 6 a 6 A is treated numerically, where the limit A depends on the prob-
lem and is found by gradually increasing a from 0 until all computed rR values (after going through their
maxima as a function of a) decrease well below zero. If for all examined values of a the amplification rate
rR < 0 the flow is linearly stable and no further linear analysis is necessary. Then the physical parameters
are changed and the computations are repeated until a regime is found in which there exists a range of a for
2 As noted by the referee there exists a theoretical possibility for this procedure to fail if r(a1) = r(a2) for real a1 6¼ a2 and
rR(a1) = rR(a2) > 0. Then it is possible that the cusp covered an odd number of times would not correspond to a pinch point. However
even if such a situation is possible in principle it has not been reported in physical flow studies to date. Therefore it is believed that it
could occur only at isolated points of the physical parameter space and therefore it would not have a significant impact on the shape of
complete CAIB in a multi-parameter space whose computation is the major emphasis of this work.



196 S.A. Suslov / Journal of Computational Physics 212 (2006) 188–217
which rR > 0 (we refer to these eigenvalues as forming a temporally unstable branch of NDR and track
them over the complex wavenumber space in further analysis). After that the value of wavenumber am is
found for which rR

m ¼ maxaI¼0ðrRðaÞÞ. This procedure corresponds to a standard temporal analysis and
can be made fully automatic as it only involves checking the sign and magnitude of rR. It requires solving
a set of linear matrix eigenvalue problems and hence is computationally straightforward. The spurious
eigenvalues, if they appear, are filtered out by recomputing and comparing the eigen-spectrum for slightly
changed discretization parameter which is also done automatically (by, say, discarding the eigenvalues
whose magnitudes vary by a quantity exceeding a set threshold when a discretization parameter is changed).
The values of am and rR

m are stored for future use. A typical picture is shown in Fig. 1(a). Note that in gen-
eral the curve rR(a) can have multiple maxima as in Fig. 5 or there could be several distinct positive rR(a)
curves, see for example, [38]. In these cases all values of am and rR

m are stored.
If the results of temporal analysis indicate the presence of unstable modes, i.e., the presence of eigen-

values r with positive real parts for some range of real wavenumbers a one can proceed to determine
the spatio-temporal character of instability. Computationally more efficient way of doing this is via locating
saddle points formed by temporally unstable branches i.e., the saddle points which belong to the same Rie-
mann sheets of a dispersion relation as its roots r(a) which have positive real parts for a range of real a.
Newton iterations which terminate when j or

oa j becomes sufficiently small offer a fast automatic way of find-
ing the saddle point as. Since the analytical expression for a dispersion relation is not known, its derivative
can be estimated, for example, via finite difference approximation using the eigenvalues computed at close
values of a, or via two-dimensional interpolation formulae as was done, for example, in [2] and [20]. The
value of am on a real wavenumber axis is a natural starting point for iterations as the spatio-temporal insta-
bility analysis has to be performed for a corresponding most unstable branch of NDR (further arguments
why this is the preferable starting point will be given later in this section). This resolves the first of the dif-
ficulties (choice of the initial guess) with the iterative search for a relevant saddle point.

The second difficulty stems out from the fact that any Newton-type iterations require approximation of a
corresponding Jacobian which in this case involves unknown second derivatives of NDR. They also have to
be estimated numerically. This might lead to the de-stabilization of iterations and in some cases to their
blowup (discussed below). Thus an alternative iterative method which does not require approximating high-
er order derivatives is necessary. This could be any unconstrained optimization method for minimizing, say,
F ¼ orR

oaR

� �2

þ orR

oaI

� �2

. ð5Þ
In the example considered here a classical simplex method was used because its implementation was readily
available in a standard IMSL routine DUMPOL. Other similar methods (e.g. [39]) could offer a faster con-
vergence, however they might be more sensitive to singularities of NDR and therefore in some severe cases
might become less robust than the simplex algorithm. This will be discussed in more detail below. Each
simplex iteration requires solving only three eigenvalue problems (2) (at a, a + Da and a + iDa) to evaluate
finite difference derivatives entering the functional, while the finite difference approximation of the Jacobian
involving second derivatives requires solving five eigenvalue problems. In addition the simplex method is
stable in the sense that it is less sensitive to the choice of a starting point. On the other hand it is charac-
terized by slow convergence which might outweigh the computational saving achieved at the derivative
approximation stage in comparison with using Newton�s method. Besides the minimization procedure
may converge to a nonzero local minimum of functional (5). Thus it is suggested to start the iterative saddle
point search using the simplex method and switch to a Newton-type iterations when the value of (5) is
reduced to a certain threshold. This hybrid procedure was successfully used in the example computations
reported later in this paper.

No matter which method is used for the saddle point search, a severe technical difficulty may occur at
this stage which prevented fully automatic computations in previous studies. Its essence is described next.
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Fig. 1. Temporal branches of NDR and parameter cR in the complex wavenumber plane for (Re,Gr,�) = (2000,407705,0.005).
Different symbols are used to distinguish between eigenvalues sorted by a numerical code in the descending order of rR.
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Any numerical code for eigenvalue calculation returns a set of numbers rj, j = 1,2,. . .. Since only tem-
porally unstable branches of NDR with rR > 0 (for real a) are of interest, it is initially most convenient
to arrange the computed eigenvalues in a descending order of the real part rR

1 > rR
2 > � � �. Only a few
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leading eigenvalues, whose real parts rR
j , j = 1,2, . . ., m may be positive, define the linear instability and

contribute to the asymptotic behavior of the flow. Therefore only the corresponding saddle points asj have
to be considered. The required eigenvalues obtained numerically have to be reliably identified among the
others in the due course of iterations over the complex a plane. So far the eigenvalue identification has been
done by visual inspection of a global picture [12,13,15]. In some flows the saddle points are located rela-
tively close to the real a line and thus the eigenvalue numbering based on rR remains the same as that
in temporal stability analysis along the real wavenumber axis. Such situations normally occur when tran-
sition to absolute instability is detected in weakly supercritical regimes when CAIB is relatively close to the
linear instability boundary in a parameter space, for example, in systems with weak through flow [17,35].
For more complicated flows the eigenvalue numbering based on the size of their real parts becomes mislead-
ing. A typical situation is shown in Fig. 1 where different symbols are used to distinguish eigenvalues sorted
in the descending order of their real parts. It is clear that only one (temporal) branch r1 of NDR contributes
to the asymptotic behavior of the flow in this case as only its real part is positive for real wavenumbers as
shown by the solid line in the top plot. Therefore it is natural to start a saddle point search by trying to
satisfy condition (1) for r1. However after a few iterations an iterative (simplex) search algorithm seems
to find a local nonzero minimum for (5) and does not make any further progress. Switching to Newton iter-
ations lead to a blowup of the approximated Jacobian and a rapid divergence of further iterations. Inspec-
tion of the intermediate results shows that starting from a certain nonzero value of aI the initially assumed
ordering of eigenvalues does not follow the leading temporal branch anymore as the required eigenvalue
does not have the largest real part. Attempting to continue using r1 in iterations leads to the above
problems.

The reason why the rR-based ordering fails becomes clear upon considering Fig. 1(b). The rI
jðaÞ, a

I = 0
curves have slopes orI

j=oa
R of different signs. Therefore according to the Cauchy-Riemann conditions signs

of orR
j =oa

I are also opposite. This means that as one moves away from the real a axis the initially well sep-
arated rR

j ðaÞ values move towards each other, some increasing, some decreasing, and eventually collide.
These ‘‘collisions’’ of a required temporal branch with other branches in complex wavenumber plane are

very common and cause a severe technical difficulty [10]. Note that the term ‘‘collision’’ in the context of
this study is not used to denote ‘‘true’’ collisions, i.e., temporal branch points where two or more eigen-
values r have the same complex values at the same complex wavenumber (multiple temporal roots of a dis-
persion relation). ‘‘True’’ collisions are relatively rare and, if they do occur, require special treatment
because a proper branch cut separating the colliding Riemann sheets has to be carefully introduced in this
case (see discussion in Section 3.3). The much more common situation discussed here occurs when two
eigenvalues have the same real, but different imaginary parts at the same complex wavenumber. This does
not cause any difficulty in theory as the two eigenvalues (or the two temporal roots of a dispersion relation)
are distinct, but ruins any numerical procedure which uses the eigenvalue sorting based on their real parts.
When the saddle point is located far away from the real a axis the number of such ‘‘collisions’’ in the region
between the real a axis and a saddle point can be great making an automatic search extremely difficult. In
the example of Fig. 1 the first saddle point is found at aI = �1.724. A visual inspection of Fig. 1(c) shows
that only the curve labeled by triangles can pass through a saddle point because, in contrast to others, it has
maxima at which derivatives are zero. But this curve represents r6, not the leading eigenvalue under the
ordering scheme based on the size of rR. Moreover it is impossible to confirm that it belongs to the same
Riemann sheet of a dispersion relation as the r1 curve in the top plot without knowing the full history of
‘‘collisions’’ on the way to the saddle point. Besides, the conclusion that the r6 branch is the only candidate
to form a saddle point can only be made after inspecting a global picture over a sufficiently wide range of
wavenumbers. It appears impossible to make such a conclusion based on the local information when only
the values of rj(as) are computed. Consequently, identifying the correct eigenvalue is a key step towards a
full automatization of the spatio-temporal analysis. This should be done using appropriate ordering of
numerically obtained eigenvalues.
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The example of Fig. 1 shows that the rR-based sorting fails. Sorting based on the magnitudes or the size
of the imaginary parts of eigenvalues does not resolve the problem either as these characteristics are not
related to the analytical properties of the problem�s dispersion relation. Indeed, the leading eigenvalue
(top solid line in Fig. 1(a)) has the fifth largest imaginary part (solid line in Fig. 1(b)) while the eigenvalue
of interest at aI = �1.724 (line partially marked by triangles in in Fig. 1(d)) has the eleventh largest imag-
inary part and therefore sorting based on the size of the imaginary part with the purpose of keeping track of
the required eigenvalue is equally unsuccessful. In some cases it can be possible to resolve the above diffi-
culty by using the two simultaneous eigenvalue ordering systems and switching between them when one of
the sorting procedures fails. For example, introduce the notation rkl, where k is the eigenvalue position in a
set sorted by the size of the real part rR

1 > rR
2 > � � � > rR

k > rR
kþ1 > � � � and l is its position in a set sorted by

the size of the imaginary part rI
1 > rI

2 > � � � > rI
l > rI

lþ1 > � � �. Then one starts at a real wavenumber with
r(am) = r1l (l happened to be 5 in the example of Fig. 1). Initially, it is safe to use the eigenvalue with first
subscript k = 1. However when moving gradually into the complex wavenumber plane one finds that, at
some aI 6¼ 0; rR

1l � rR
2l0 ; l

0 6¼ l. Clearly, when the difference jrR
1l � rR

2l0 j becomes sufficiently small, say, less
than some small value �, the ordering based on the size of the real part becomes unreliable as the two real
parts are about to collide. At the stage when the two real parts are close but still distinguishable the position
l of a required eigenvalue in a set sorted by the size of the imaginary part is then detected and the eigenvalue
with the second subscript l is used in further computations rather than the eigenvalue with the first subscript
1. Eventually, as the iterative saddle point search progresses beyond the point of the ‘‘collision’’ of real
parts the difference between the two leading real parts increases again and from now on eigenvalue r2l is
used in computations until the next ‘‘collision’’ is encountered i.e., until one of the conditions
jrR

2l � rR
1l0 j 6 � or jrR

2l � rR
3l00 j 6 �; l 6¼ l0 6¼ l00 6¼ l is satisfied. The procedure is repeated until a saddle point

is found in the complex wavenumber plane. Clearly, this tracking approach only works if no ‘‘true’’ colli-
sions occur and the iterative increments Da in individual iterations remain sufficiently small and relatively
regular so that the switch between the two ordering schemes occurs just before the real part collision.
Numerical experiments show though that the latter conditions are difficult to satisfy in practice. The opti-
mal value of tolerance � is not known and the iterative path determined by a specific search algorithm (e.g.,
simplex or Newton iterations) is frequently irregular and is prone to overshoot the collision points. A typ-
ical example of such a path is shown by an irregular solid line in Fig. 3. Regularization of the iterative path
by artificially reducing the a increment, although possible to a certain extent, would reduce the convergence
rate and therefore the computational efficiency of a saddle point search algorithm.

An even more severe limitation of the above tracking approach was pointed out to the author by Dr
D.G. Duffy of NASA/GSFC [40]. He found that the temporal instability of some atmospheric fronts (with
reflectional symmetry) is determined by a pair of complex conjugate eigenvalues (at aI = 0) as shown in the
two top plots in Fig. 2. Stepping away from the real a axis, say, in the lower half of the complex a plane
breaks the symmetry, and the two dominant eigenvalues are not complex conjugate of each other anymore,
see the middle two plots in Fig. 2. Yet the readily available information about the magnitudes of the real
and imaginary parts of the two leading eigenvalues is insufficient to decide which one of them forms a sad-
dle point and defines the asymptotic behavior of the system. Additional information is required to proceed
with the analysis.

Theoretically, the leading temporal branches should be placed on separate Riemann sheets [4]. The
above discussion shows that to do this numerically is a very challenging task which has not been addressed
adequately to date. In order not to adversely affect the efficiency of the computational process the proce-
dure must be inexpensive, local in the sense that one should be able to use only quantities obtained at a
particular value of a to identify the required eigenvalue, and it should not involve any visual inspection
or other sort of human intervention in the due course of the saddle point search.

Such a procedure involving only one eigenvalue ordering system was suggested by the author in [10]. The
core part of the technique is computing quantity
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Fig. 2. Temporal branches of NDR and parameter cR in the complex wavenumber plane for an example of atmospheric front
instability by Dr D.G. Duffy [40]. Different symbols are used to distinguish between eigenvalues sorted by a numerical code in the
descending order of rR. The bottom right plot is a close-up view of the left plot.
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cRj ¼ rR
j þ aI orI

j=oa
R

� �
¼ rR

j � aI orR
j =oa

I
j

� �
ð6Þ
along with eigenvalues rj (in writing the above equation, the Cauchy–Riemann condition orR
j =oa

I ¼
�orI

j=oa
R was used); then starting from am a saddle point is sought for the branch which always corre-

sponds to the largest value of cRj . In brief, the reasons why this numerical recipe works satisfactorily are
as follows. If parameter cR is computed at the wavenumber for which orR/oaR = 0 (e.g., at the maximum
of the rR(a) curve along the line aI = const.) then it represents the disturbance amplification rate observed
in a frame moving with speed V = �orI/oaR. As wavenumber changes from am to as, V varies from the
disturbance group speed cg to 0 and the amplification rate cR changes from maximum to the so-called abso-
lute (observed in a stationary frame). Consequently, choosing the eigenvalue corresponding to the largest
value of cR enables tracking an asymptotically dominant eigenmode in frames moving with speeds
approaching zero.

The above procedure was inspired by the work of Deissler [20] and appears topographically similar to
what sometimes is referred to as the continuation technique. The essence of this technique is described,
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for example, in [31,41] and is interpreted in the context of this paper as follows. The maximum of rR is sys-
tematically searched along a set of lines aIk ¼ kDaI, k = 0,1,2,. . . in the complex wavenumber plane for some
small value of DaI. This is the most expensive part of this continuation procedure because a sufficiently large
number of eigenvalue problems has to be solved for each fixed value of aIk with different aR to find the loca-
tion of the rR maximum and its value. The step number k increases until the maximum value of rR becomes
negative. The translational velocityV = �orI/oaR is computed at the rRmaximum for each k. Then this con-
tinuation procedure is repeated for the negative values of k (e.g. [26]). In this way a complete range of frame
velocities V is systematically computed for which amplifying disturbances (cR > 0) are observed, see line I in
Fig. 9 which will be discussed in more detail later. This is a major finding in such an investigation [31]. If the
obtained velocity range includes only velocities of the same sign the instability is convective, otherwise it is
absolute. Therefore if the above continuation procedure is used, the conclusion about the spatio-temporal
nature of instability, which is the major goal of the current study, arises as a corollary of a more comprehen-
sive analysis rather than as its direct result. This is why using the continuation procedure to locate transition
between absolute and convective instabilities in multi-parameter space is numerically expensive. Indeed a
reliable implementation of a continuation procedure requires searching the exact location of the rR maxima
along the sufficiently dense regular grid of the aIk ¼ const. lines [26]. Although each of the found maxima
provides accurate information about the amplification rate observed in a frame moving with some velocity
V (see Fig. 9) only the amplification rate rR

s ¼ cRV¼0 observed in a stationary frame V = 0 is needed to deter-
mine the character of instability. Hence, the numerical expense. In contrast to this continuation procedure
which is an analytical tool in its own rights (and which will be used as such to justify some of the numerical
steps of Section 3.3) the eigenvalue tracking based on cR ordering suggested here is a supplementary tech-
nique which is used in conjunction with direct iterative search of a saddle point corresponding to V = 0 only.
Numerical saving is achieved because the iterations effectively bypass all nonzero values of the translational
frame velocity since it is not required that the condition orR/oaR = 0 is satisfied exactly during the iterations
for all intermediate values of aI between 0 and aIs. It is sufficient that the search follows the hill of the rR(a)
surface from am (black triangle in Fig. 3) to as (black circle in Fig. 3) only approximately. This happens nat-
urally during the iterations when the eigenvalues are ordered using the corresponding values of cRj . In con-
trast to a continuation procedure, an iterative search only requires to solve a single eigenvalue problem at
each iteratively chosen value of aI. The irregular solid line in Fig. 3 shows the convergence of an iterative
(simplex in this case) saddle point search algorithm. Neither does it coincide with the dotted line in Fig. 3
(or line I in Fig. 8) showing the hill of the rR(a) surface which would have to be first found and then followed
exactly by a standard continuation procedure, nor is DaI small during the iterations as would be required by
the continuation procedure. In fact, the iterative path to a saddle point can even overshoot the saddle point
significantly before finally converging to it. Yet this does not result in a significant increase of computational
time as would happen if an overshoot occurred in a standard continuation approach. Finally, note that the
implementation of a regular continuation procedure which requires locating the hill of the rR(a) surface as a
maximum of the rR(a) along the lines parallel to the real a axis is likely to fail unless a reliable eigenvalue
tracking is implemented. Indeed while the required hill is topographically prominent near the real a axis,
deeper in the complex plane it may be covered by other Riemann sheets (eigenvalue surfaces) which have
nothing to do with the temporal branch of NDR defining the type of instability, see Fig. 1(c). On the other
hand, even though Fig. 1(c) shows that the temporal branch of NDR which forms a hill (and a saddle point)
is covered five times, still it is easy to identify in plot (e) as there it corresponds to the largest value of param-
eter cR (the line marked by triangles in the vicinity of as) over a wide range of wavenumbers. Therefore the
required Riemann sheet of NDR is reliably tracked up to the saddle point using the suggested eigenvalue
sorting procedure. Note also that in the depicted case cRðasÞ ¼ cRV¼0 ¼ 0, i.e., the considered regime may
correspond to transition between absolute and convective instabilities.

Consequently, evaluation of cRj at every point along the path of the iterative saddle point search resolves
two important problems simultaneously: it tracks the required branch (Riemann sheet) of a fully numerical



Fig. 3. Level curves of the rR(a) surface for (Re,Gr,�) = (2000,407705,0.005). The dotted line follows the hill of the rR(a) surface, the
irregular solid line shows the (simplex) iteration path from am (black triangle) to a pinch saddle point (black circle). The empty circle
shows the location of a saddle point which is not a pinch point. The horizontal solid line corresponds to the original undeformed
contour aI = 0.
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dispersion relation using only local information, and it determines the character of instability when evalu-
ated at a saddle point. Also note that the evaluation of cRj does not involve any extra cost as the required
derivatives are already computed when the saddle point condition (1) or (5) is evaluated.

While the advantages of the cR-based eigenvalue sorting are shown above this technique might also
encounter difficulties. Note irregularities in Fig. 1(e). The cR-sorting reliably identifies required eigenvalues
over a wide range of wavenumbers but fails at several isolated rR-collision points. There are two reasons for
this. Firstly, the finite difference formulae of eigenvalue derivatives used to evaluate cRj may jump from one
branch to another when evaluation of cR is attempted in the Da-neighborhood of a collision point. This
invalidates the finite difference approximation of derivatives but the problem can be easily fixed by decreas-
ing Da used in the finite difference formulae. Secondly, the ‘‘collision’’ points may correspond to eigenvalues
of higher multiplicity (temporal branch points). Standard eigenvalue solvers may lose their accuracy in such
a situation. Then inaccuracy of numerically obtained eigenvalues is amplified even more when they are used
to approximate derivatives [26]. Therefore it is possible that in the due course of an iterative saddle point
search some computed values of cRj will be corrupted invalidating the required eigenvalue ordering. How-
ever in contrast to other eigenvalue tracking techniques discussed above this can only happen at isolated
points in the complex wavenumber space and usually away from the hill of the rR(a) surface as illustrated
by Fig. 1(c) and (e). Therefore the failure of the cR sorting although possible is significantly less likely and
damaging than that of other eigenvalue sorting techniques. Yet numerical experiments show that encoun-
tering even a single isolated numerical singularity of this sort can throw a saddle point search such as New-
ton or even Powell [39] iterations completely off course. Yet a simplex method was found to be quite
insensitive to such isolated singularities and converged in all computations performed by the author with-
out any human intervention. The only evidence of the fact that simplex iterations did encounter isolated
singular points where the eigenvalue tracking failed and functional (5) was evaluated incorrectly was a lar-
ger than usual iterative wavenumber increment resulting in an overshoot beyond the saddle point, see
Fig. 3. However, since the eigenvalue tracking procedure based on the cR sorting remains valid beyond
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the saddle point this overshoot did not result in the ultimate search failure but just slowed it down by a few
iterations. This explains why the use of a relatively slow simplex algorithm which does not require evalu-
ation of higher derivatives may be a safer option in comparison with a generally faster converging Newton
method at the initial stage of a saddle point search: large errors in approximating Jacobian in the vicinity of
‘‘collision’’ points cause Newton method to diverge, while a method based on function evaluation is influ-
enced by irregularities to a much smaller degree. Once a simplex (or any other derivative-free) method is
used first to minimize (5) to a sufficiently small level, the likelihood of further eigenvalue collisions and
irregularities is reduced and then Newton iterations can be safely used to locate a saddle point accurately
and efficiently.

For the sake of completeness we note that in a relatively rare situation when the isolated singularity asso-
ciated with the rR collision is encountered in close vicinity of a saddle point the above procedure may not
perform well even if the simplex method is used throughout the iterative search. Such a situation was found
in the analysis of atmospheric front instabilities and described to the author by Duffy [40]. The full conver-
gence could not be achieved because the iterative path kept returning towards the saddle point just to be
pushed away from it by the nearby numerical singularity. Such a problem can be fixed by implementing
a two-way eigenvalue sorting procedure similar to that discussed in the beginning of this section but com-
bining cR and rI sorting.

The definition of cR = rR � aIV can be used to determine whether the required saddle point is in the
upper or lower half of the a plane. Since the positive maximum of rR evaluated at real a is the maximum
possible temporal amplification rate observed in a coordinate system moving with the group speed, the
value of rR must decrease towards the saddle point because the absolute growth rate rR(as) is the ampli-
fication rate observed at a stationary system and therefore rR(as) 6 rR(am). It follows from the Cauchy-
Riemann conditions that V = cg = �orI/oaR = orR/oaI along the real a line. Then in order to guarantee
the decrease of rR towards the saddle point one must move down from the real axis if cg > 0 and up if
cg < 0. This conclusion is consistent with that of [20] where it was formulated as an observation without
proof. It can be straightforwardly used to resolve the eigenvalue identification problem illustrated in
Fig. 2. The slopes of the rI lines indicate that the group speed is positive (negative) for the wave packet
whose characteristics are shown by the line marked by the ‘‘+’’ signs (plain solid line). Therefore the eigen-
value marked by the ‘‘+’’ symbols will form a saddle point in the lower half of the complex a plane and
should be tracked for aI < 0. This follows automatically from the bottom right plot in Fig. 2: the eigenvalue
marked by the plus signs corresponds to the larger value of parameter cR and thus has to be followed for
aI < 0.

The saddle point search procedure based on temporal instability analysis which involves computing r(a)
branches of NDR was described in this section. This procedure is designed to automatically overcome two
major technical difficulties associated with the presence of multiple branches of NDR: tracking the required
Riemann sheet and stabilization of the iterative search procedure. These difficulties are not specific to the
temporal instability approach. The issue of distinguishing multiple branches arising in a spatial instability-
based approach [16,21] is equally severe. Since the spatial instability approach is numerically more compli-
cated due to its nonlinearity the possibility of its automatization is less likely. Therefore solving NDR for
r(a) seems preferable.

3.2. Checking the pinching condition

Although the numerical procedure described in Section 3.1 resolves the major problem with automatiza-
tion of a saddle point search, locating the saddle point of NDR and checking the sign of the absolute growth
rate is not sufficient to make a final conclusion about the character of instability. It has to be shown that the
found saddle point is relevant i.e., it is a genuine pinch point of the dispersion relation. Such a point is formed
by two spatial branches a(r) of NDR originating in the upper and lower halves of the complex a-plane when
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rR is fixed to a sufficiently large value3 (see the saddle point marked by black circle in Fig. 3). If such pinching
condition is not satisfied (e.g. the saddle point marked by an empty circle in Fig. 3) the asymptotic contri-
bution of this saddle point does not result in absolute instability even if rR(as) > 0, see [5,6,8].

Checking the pinching condition is a very expensive computational exercise. Constructing spatial
branches requires either solving nonlinear eigenvalue problem as discussed in Section 2 or computing
the complete global network of rR = const. contours over the complex wavenumber plane. The former
would annihilate any computational advantages achieved by applying the procedure of Section 3.1 and
therefore the latter is commonly used. Unfortunately, the global topography is strongly problem-dependent
so that in practice even if it is constructed its visual inspection is required on a case-by-case basis. To
demonstrate these difficulties refer Fig. 3 which corresponds to the saddle point discussed in Section 3.1.
In order to construct it, 900 temporal eigenvalue problems (2) were solved on a 30 · 30 grid in the complex
wavenumber plane over a region containing both the real a axis and the saddle point. Another 900 eigen-
value problems were solved on the same wavenumber grid with slightly changed discretization of the gov-
erning equations so that the spurious eigenvalues could be filtered out. Then ten leading eigenvalues rj
which were sorted in the descending order of their real parts by a numerical solver were stored at each
point. This array of 9000 eigenvalues was still not suitable for creating Fig. 3 because of the irrelevant
ordering of the eigenvalues at each point. Reordering them over the complete wavenumber range using
parameter cR required solving another 900 eigenvalue problems on a slightly shifted grid in the a plane
to allow for the finite difference approximation of derivatives entering parameter cR, but it still was not fully
successful. Indeed, by construction, the largest value of cRj is guaranteed to identify the required Riemann
sheet only near the top of the hill of the rR surface connecting am and as. As seen from Fig. 1(e) for wave-
numbers a which are sufficiently far to the right from as the largest parameter cR does not identify the re-
quired branch of NDR anymore. Thus while of great help in locating a saddle point, computing cR does not
resolve all difficulties in constructing the global topography.

Great numerical cost and the necessity of a visual inspection of the global topography makes checking
the pinching condition at every point in a multi-parameter space impractical when a complete CAIB involv-
ing thousands of points has to be determined. For this reason the check is normally done only for selected
points and then it is assumed that the qualitative topography of rj(a) does not change in between the tested
points [12,37,27]. Obviously, the more complicated the physical problem is, the more nonlinear NDR
becomes, the more difficult it is to construct a global picture for a reasonable number of test points. The
danger of missing a qualitative change in topography and making a wrong conclusion about the spatio-
temporal character of instability increases. Therefore an alternative, computationally more efficient local
check of pinching condition is needed. It can be done using the approach of [4]. There the authors showed
that the path aI ¼ aIs through a saddle point of the rR(a) surface is mapped into a path forming a cusp in the
complex r plane. As was discussed in Section 2 locating a cusp point normally would require a visual
inspection and, consequently, could not be done automatically [27]. On the other hand, once the saddle
point is accurately determined via the automatic procedure described in Section 3.1 the cusp point
r = r(as) is known as well. According to the proof given in [4] the check of the pinching condition then
is reduced to counting how many times the cusp point is covered by the the temporal branches of NDR
computed along the real a axis. Most importantly, this does not require any extra computations as all
required temporal branches have already been computed at the very first step of the saddle point search
procedure of Section 3.1. The procedure replacing the construction of a global picture of Fig. 3 is illustrated
3 This is true if the considered disturbance wavenumber range includes all wavenumbers with �1 < aR < 1. In some problems it is
convenient to take into account the symmetry of the wavenumber/frequency spectrum and consider only 0 6 aR < 1. The treatment of
a pinching condition in this case could formally be different from that given by Briggs [7]. The corresponding discussion can be found in
[32]. Considering only the positive range of wavenumbers may not be sufficient for checking the pinching condition if the saddle point
is found at the imaginary a axis as in example of Fig. 5 considered by Kupfer et al. [4].
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in Fig. 4 where the images of r along the paths aI = 0 and aI ¼ aIs are presented. The cusp point (circle) is
covered from the top only once (odd number of times) by images of the temporal branches (solid lines)
which means that it is a genuine pinch point according to [4]. Note that solid lines in Fig. 4 are images
of branches of NDR shown in the top plot in Fig. 1. They may remain sorted according to the size of their
real parts as in temporal stability analysis because only the knowledge of rR

j is required in this approach to
conclude whether the pinching condition is satisfied. In practice construction of Fig. 4 and its visual inspec-
tion are not necessary. Indeed once the characteristics of a saddle (cusp) point are established one only
needs to count how many temporal eigenvalues (which have already been computed for aI = 0) whose
imaginary parts rI

j ¼ rI
s have the real part which is larger than rR

s . This can be done automatically as
the information about all eigenvalues for real a is known from the start. Finally, note that the cusp-forming
curve in the r plane is typically very sharp as seen from the left plot in Fig. 4. For this reason searching the
cusp directly would require very detailed visual inspection of a strongly magnified map as that shown in the
right plot of Fig. 4 [27]. This is an impractical and subjective procedure and the iterative saddle point search
described in Section 3.1 remains a much more accurate, convenient and efficient alternative.

3.3. Multiple rR maxima and multiple saddle points

So far it was implicitly assumed that the rR(a) curve at real a has a single maximum as in the top plot in
Fig. 1 and the required Riemann sheet of the dispersion relation contains only one saddle point which con-
tributes to spatio-temporal instability. However as was pointed out almost four decades ago in [38] neither
of these conditions have to always be satisfied in physical problems. This was demonstrated in the author�s
earlier studies of non-Boussinesq convection [42]. Multiple maxima of the rR(a) were also found in a rotat-
ing-disk boundary layer [8] while multiple saddle points (albeit discussed in the context of the continuation
procedure summarized in Section 3.1) were found in the flow along an inclined plane [31], and recently in
three-dimensional boundary layers [26] and in Kelvin–Helmholtz instability [32]. It is also worthwhile
noticing that multiple maxima of the rR(a) curve for real a can lead to looping and self-intersection of
the image of the real wavenumber axis in the complex r plane, see the right end of the upper solid curve
on Fig. 6. If such a loop encloses a branch (saddle) point the situation would be identical to that of the
artificial example presented by Kupfer et al. [4] in their Fig. 5. However the author did not find such a sit-
uation neither in his own computations nor among the physical results reported by other authors so far and
thus it is not discussed here in detail.
Fig. 4. Cusp map for (Re,Gr,�) = (2000,407705,0.005) (left) and its close up (right). The solid and dashed lines show the images of the
branches of NDR for aI = 0 and aI ¼ aIs, respectively. The cusp point is shown by a circle.



Fig. 5. Temporal branches of NDR and parameter cR in the complex wavenumber plane for (Re,Gr,�) = (239,49898,0.3). Different
symbols are used to distinguish between eigenvalues sorted by a numerical code in the descending order of rR.
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In the author�s studies, added physical nonlinearities associated with fluid property variations with tem-
perature in non-Boussinesq mixed convection lead to the situation illustrated in Figs. 5–7 which exists in a
wide range of physical parameters. The top plot in Fig. 5 shows that the leading branch of NDR has two



Fig. 6. Cusp maps for (Re,Gr,�) = (239,49898,0.3): the left and right plots correspond to the left and right saddle point in Fig. 7,
respectively. The solid and dashed lines show the images of the branches of NDR for aI = 0 and aI ¼ aIs‘. The cusp points are denoted
by circles.

Fig. 7. Level curves of the rR surface for (Re,Gr,�) = (239,49898,0.3). The dotted and dashed lines are the level curves of the rI(a)
surface passing through the saddle points (black circles) which show the steepest descent paths to and from the saddle points,
respectively. The horizontal solid line corresponds to aI = 0, the irregular solid lines originating at black triangle and black diamond
show the iterative saddle point search paths.
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distinct maxima located at am1 and am2, am1 < am2. These maxima can be traced back to different terms in
the governing equations and therefore they represent physically different mechanisms of instability. Line-
arly, these two maxima can be viewed as representing two disturbance wave envelopes propagating each
with its own group speed and characterized by its own dominant wavenumber am1 or am2. The edges of
these envelopes can overlap and therefore the distinction between them might be hard to establish exper-
imentally. However if at least one of these envelopes is absolutely unstable then the flow is guaranteed to be
absolutely unstable. Therefore following the procedure described in Sections 3.1 and 3.2 we look for CAIB
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by initiating the iterative saddle point search first at am1 and then at am2. In this way, two distinct saddle
points are found at as1 and as2, which happened to be in the top left (just above the real a axis) and in the
bottom right corners of Fig. 7, respectively. Although the possibility of the existence of multiple maxima
was first noted several decades ago (e.g. [38] and references therein) the validity of the above approach does
not appear to be discussed with sufficient theoretical rigor to date. However the success of the saddle point
search using the outlined procedure is not accidental. It can be foreseen based on the continuation proce-
dure outlined in Section 3.1, even though such a procedure is not used in practical computations here. In-
deed as discussed for example in [31] the maximum of the rR(a) curve for real a corresponds to the saddle
point of a dispersion relation written for a system moving with the group speed of a wave envelope centered
at the wavenumber corresponding to this maximum. Small variation of the frame speed leads to continuous
displacement of the saddle point into the complex wavenumber plane (reference [31] proves this using the
Taylor series expansion of a dispersion relation). These arguments can be extended to the situation where
several maxima exist and therefore it can be concluded that the saddle point corresponding to each of the
maxima exists for some range of frame velocities [8]. Since our goal here is detecting the transition to abso-
lute instability this range should include zero velocity. However no proof is yet readily available that this is
indeed always the case when multiple maxima are present. Therefore in practice it is suggested to always
initiate the iterative saddle point search from each of the maxima ami, i = 1,2,. . .. If such a search converges
and a saddle point (1) corresponding to V = 0 is found then the sign of rR(asi) is determined and, if it is
positive, the pinching condition is checked to confirm the absolute nature of instability associated with
the wave envelope centered at ami. Divergence of the iterative saddle search would signal a singular situa-
tion caused by non-analyticity of a dispersion relation. Such situations would require a more comprehen-
sive analysis. However so far they were not encountered in the author�s own computations nor were they
reported in any of the studies known to the author.

Since it is found that rR(as1) < 0, checking the pinching condition for this point is not required as even if it
is a genuine pinch point it cannot lead to absolute instability because the corresponding wave envelope has
negative growth rate in a stationary frame. On the other hand the second saddle point has rR(as2) = 0 and is
a clear candidate for determining transition to absolute instability. This saddle point is located relatively far
away from the real a axis (at aI = 1.981) and the value of rR(as2) is not the largest (it is the second largest, see
the line marked by the ‘‘+’’ symbols in the second from the top plot in Fig. 5). Therefore the automatic iter-
ative search of this saddle point becomes possible only upon using some eigenvalue tracking algorithm such
as that of Section 3.1: the corresponding value of cR remains the largest even though the iterative path shown
by the irregular solid line in Fig. 7 is far from that required by a standard continuation procedure outlined in
Section 3.1. The automatic check of a pinching condition discussed in Section 3.2 is also successful and con-
firms that this point is relevant (see the right plot in Fig. 6 which also illustrates this fact). Since the value of
rR(as) = 0, the considered regime seems to correspond to a point on CAIB. However a more careful consid-
eration shows that this is not so. It turns out that the considered Riemann sheet contains another saddle
point at as3. It is clearly seen in the left part of Fig. 7. In contrast to the left saddle point seen in Fig. 3 it
satisfies the pinching condition (see the left plot in Fig. 6)4 and it happens to lie on slightly higher grounds
with respect to the first saddle point. This means that the conclusion that the transition to absolute instability
was just detected is wrong, the flow is already absolutely unstable owing to the contribution of a second sad-
dle point. Yet as seen from Fig. 7 the saddle point search initiated at am2 (black triangle) whose iterative path
(irregular solid line originating from a black triangle) essentially follows the steepest descent path towards
the right saddle point (dash-dotted line) and fails to detect it. A similar failure of the standard continuation
4 Comparison of Figs. 3 and 7 shows that we are dealing with the so-called pinch dissolution due to the interaction of two
neighboring saddle points: the situation when the saddle points undergo a qualitative change from pinching to non-pinching and vise
versa as the physical parameters change. This was first discussed in [38] in the context of plasma physics but appears to be a relatively
common situation in fluid mechanics studies.
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procedure which follows the maximum of the rR(a) surface was reported in [31,26,32] and its reason was
stated as a saddle point bifurcation. In the context of this work we note that the second saddle point is caused
by the existence of the second hill of the rR(a) surface such as the one seen in the left half of Fig. 8 which is
not connected to that at ami by continuity. This second hill is seen as an additional maximum in Fig. 5 sep-
arated from the first one by a minimum when aI is fixed to some nonzero value, see the lines marked by the
‘‘+’’ symbols in the second and fourth from the top plots. As noted in [31] and will be discussed below, the
additional saddle point is due to the fact that the problem�s dispersion relation is multi-valued at some com-
plex values of a (the presence of ‘‘true’’ eigenvalue collisions, i.e., eigenvalues of multiplicity two).

It is an alarming fact that the search algorithm of Section 3.1 did not locate the dominant saddle point as3.
Part of the problem is that the numerical results obtained for real a give no hint on whether additional sig-
nificant saddle points not directly related to the maxima of the rR(a) curve at real a exist somewhere in the
complex wavenumber plane. It is also stated in [31] that the orientation of the steepest descent path from a
saddle point contains no direct information concerning the existence of an equivalent steepest descent path
and therefore of a second saddle point. For this reason in [31] spatial roots of the dispersion relation were
found and their collisions were visually analyzed to detect spatio-temporal characteristics of instability. This
is computationally less efficient than finding the temporal roots of the dispersion relation. Fortunately the
situation with finding the saddle points formed by temporal branches of NDR is not as hopeless as it appears
at first sight. The following topological arguments suggest how the presence of additional saddle points can
be indicated without opting for a greatly more expensive computations of spatial roots.
I

II

Fig. 8. The surfaces rR(a) (top) and rI(a) (bottom) representing the Riemann sheet containing the dominant saddle points (shown by
black disks) of a dispersion relation for (Re,Gr,�) = (239,49898,0.3). Lines I and II follow the maximum and minimum of the rR(a)
surface when cut by the aI = const. planes.
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Assume that the saddle point search procedure suggested in this paper and initiated at am2 resulted in a
saddle point as2 at which rR(as2) = 0 and which is a genuine pinch point, see Fig. 7. Clearly, it is a candidate
to define the transition to absolute instability. However this is only so if there are no other saddle points
satisfying the pinching condition which are located at higher grounds with respect to rR(as2). By construc-
tion rR(as2) belongs to the hill of the rR(a) surface and therefore it must be located at the ‘‘nose’’ of the U-
shaped rR = const. contour protruding into the complex wavenumber plane from the real a axis as seen in
Fig. 7. The specific U-shaped form of contours is enforced by the fact that rR(a) has a maximum along the
real a axis so that rR = const. contours connect the points with equal amplification rate located on the
either side of this maximum. Since at a saddle point orR

oaR ¼ 0, the contour forming it has a tangent parallel
to the real a axis as it approaches the saddle point. Therefore this saddle point is necessarily located at the
maximum possible distance from the real a axis along the U-shaped rR = 0 contour. If another saddle point
as3 exists which is not related to the hill originating at am2, it can only be asymptotically significant if it, like
as2, is formed by the U-shaped contours. This is so because these are the only contours which retract com-
pletely to the other half of the complex a plane when rR increases as required by the pinching condition [6],
e.g. see Fig. 7. In addition, in order to contribute to absolute instability this saddle point must have rR > 0.
This means that it should be located uphill from as2, i.e., closer to the real a axis so that jaIs2j > jaIs3j, and the
U-shaped contours should approach it from the aI = 0 and/or from the a = am2 lines. On the other hand,
the counterparts of the U-shaped contours forming such a saddle point and corresponding to the increasing
rR levels must remain in the same half-plane as as2. This is only possible if a second hill distinct from that
containing as2 exists in the same half-plane. Moreover, since the U-shaped contours corresponding to the
increasing rR levels move towards the real a axis and towards am2 their counterparts must move generally in
the opposite direction, i.e., towards the line aI ¼ aIs2, but away from the line aR ¼ aRs2. This means that the
second hill of the rR(a) surface, if exists and leads to a saddle point as3 satisfying the pinching condition,
should be separated from the first hill containing as2 by the valley which indeed is seen in the top plot in
Fig. 8. As follows from the above discussion the second hill should continue away from the real a axis. Then
the presence of the valley separating the two hills may be detected by inspecting the rR(a) curve obtained
along the straight line aI = const. issued from the saddle point at as2: if the second hill exists then this curve
will have a characteristic minimum, see the line marked by the ‘‘*’’ and ‘‘+’’ symbols in the second top plot
in Fig. 5.

Therefore the possible presence of an additional relevant saddle point is strongly indicated by the min-
imum of the rR(a) curve computed for aI ¼ aIs2 (see also [26] for some numerical recipes in this regard for
three-dimensional flows). Once such a minimum is detected, finding a second saddle point has to be at-
tempted. The location of this minimum (shown by the diamond symbol in Fig. 7) may be conveniently used
as a starting point for an iterative search of the saddle point as3. This time the iterative search approxi-
mately follows the bottom of the valley of the rR(a) surface. Note that as seen from Fig. 5 the eigenvalue
sorting based on cR still identifies the required eigenvalues reliably. This is so because at the minimum the
condition orR

oaR ¼ 0 is satisfied and therefore parameter cR gives the amplification rate observed in a frame
moving with velocity V ¼ orI

oaR which now corresponds to a wave envelope not connected to that centered
at am2 by continuity. If this envelope is asymptotically dominant and leads to absolute instability it must
have the largest amplification rate, the condition required by the adopted cR sorting of eigenvalues. This
is indeed the case and is seen in Fig. 9 which is qualitatively identical to Fig. 7(a) in [31]. Although the con-
struction of such a diagram is not required to determine transition to absolute instability it is instructive to
discuss it and show how the current computational approach relates to that of [31]. This is done next.

If the standard continuation procedure was used starting at am2 it would follow the top of a larger hill in
the upper plot of Fig. 8 towards as2 so that orR

oaR would remain zero. The corresponding trajectory is shown by
line I. For each point of this trajectory the frame velocity V = �orI/oaR and the the amplification rate (6)
observed in this system would be computed and then parametrically graphed in Fig. 9. As expected the
maximum growth rate is observed in a system moving with the group speed cg = V(am2) and it decreases
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Fig. 9. The real amplification rate cR observed in a frame moving with velocity V for (Re,Gr,�) = (239,49898,0.3). Lines I and II
correspond to the branches obtained by continuation along the hill and the valley of the rR(a) surface. Segments of the branches
formally obtained from non-pinching saddle points are shown by dashed lines.
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towards zero as line I approaches the saddle point as2 where V becomes zero. If line I were continued to the
other half of the a plane then the other half of curve I in Fig. 9 would be obtained for larger positive values
of V. This has not been done because the other half of the cR(V) curve is not needed when the conclusion on
whether the instability is absolute or convective is made: only the part of the curve closest to V = 0 is
important for this purpose. A similar continuation procedure which starts at the bottom of the valley
and which follows it along line II in Fig. 8 would result in branch II in Fig. 9 (cf. [26]). Note that although
the valley continues beyond the saddle point for aI J �1.5 its orientation changes in such a way that the
condition orR

oaR ¼ 0 cannot be satisfied anymore and the continuation trajectory II turns back towards the
larger negative values of aI. Now, for negative values of V, it follows the second hill seen in the left lower
corner of the top plot in Fig. 8 (this part of line II is not visible in the figure as it is screened by the hill). In
the depicted case, line II in Fig. 9 corresponds to a slightly positive growth rate at V = 0 and therefore this
branch obtained by continuation along the valley, rather than along the hill, of the rR(a) surface determines
the transition to absolute instability. The pinching condition for the corresponding saddle point for V = 0
has been already checked as described earlier in this section. However we revisit this aspect once again from
a different point of view to shed more light on the role different saddle points play. Fig. 10 shows the four
cR(a) fields which are obtained from Fig. 7 by applying transformation (6) for V = �10, 10, 60 and 90. As
seen from the resulting patterns the two saddle points exchange their pinching properties: for negative
velocities the left saddle point (obtained by continuation along the valley) is significant as it is formed
by the spatial roots rR = const. originating in different halves of the a plane. On the other hand, for positive
velocities the right saddle point (obtained by a continuation from the maximum am2) is significant. This is a
case of pinch dissolution which is discussed in [38] and also found in Kelvin-Helmholtz instability [32],
rather than a saddle point bifurcation refered to in [31]: two saddle points always co-exist, but exchange
their asymptotic role. Note that for V J 75 saddle point located in the valley (branch II) formally predicts
the larger amplification rate than that on a hill (branch I). However this saddle point remains asymptoti-
cally insignificant because the corresponding pinching condition is not satisfied, see the bottom right plot in
Fig. 10. The segments of the growth rate branches which are obtained from non-pinching saddle points are
shown in Fig. 9 by dashed lines.

It follows from the above discussion that searching a saddle point and checking the pinching condition
as suggested in this work are capable of producing results qualitatively identical to those reported in
[38,8,31] without solving the problem dispersion relation for its spatial roots a(r). This is especially impor-
tant if the dispersion relation is highly nonlinear in wavenumber so that finding the spatial roots becomes
an extremely challenging task. The only extra computational cost is associated with the need to solve an



Fig. 10. Pinch dissolution process as the frame velocity V changes for (Re,Gr,�) = (239,49898,0.3). Saddle points satisfying (not
satisfying) the pinching condition are shown by solid (empty) circles.
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additional set of standard temporal eigenvalue problems along the line aI ¼ aIs2 and subsequent iterative
search of a secondary saddle points if the shape of the obtained rR(a) curve indicates their existence. This
cost is well offset by the increased reliability of the obtained results and is still much smaller than the cost of
constructing a global topography as in Fig. 7 which is given here as an illustration rather than an essential
part of the search process. Even with these additional steps the computational procedure described here
retains its automatism as finding maxima or minima does not require a visual inspection.

Since the additional computations have to be carried out for a sufficiently wide range of aR at
aI ¼ aIs2 6¼ 0 the success of the whole procedure depends crucially on the reliability of the automatic eigen-
value tracking. Numerical experiments showed that the cR sorting appears to do a good job even in com-
plicated situations such as those discussed in this section. However note that as seen in the bottom plot in
Fig. 5, for numerical reasons discussed in Section 3.1, the cR sorting still fails for several isolated points: see
the diamond symbols above the ‘‘+’’ symbols. This inevitably leads to an incorrect evaluation of functional
(5) and would cause severe problems to most of the minimization algorithms. However as noted earlier, a
simplex method copes with such isolated singularities quite well and just requires a few extra iterations (see
the loop near the diamond symbol in Fig. 7) to converge: a reliability feature which in many cases out-
weighs the faster convergence of other algorithms.

In the end of this section, we will discuss another important aspect which also sheds light on the multiple
saddle point situation. A singularity is clearly seen just below the real a axis in the upper left corner of
Fig. 7. It is caused by the ‘‘true’’ collision i.e., by a multi-valued point of the problem dispersion relation
which is depicted in Fig. 11. This figure shows that as the value of aI decreases from 0 to aIb � �0.037 the
two eigenvalue branches collide in a ‘‘true’’ way so that the numerical dispersion relation has an eigenvalue
of multiplicity two. Note the characteristic cusp forming near the collision point and a cross-over of the r(a)
curves. Theoretically continuing the saddle point search beyond aIb requires the introduction of a branch cut
originating at the collision point, see the top left corner in Fig. 8. This should be done in such a way that the
maximum of the rR(a), aI = 0 attained at am2 belongs to the same branch of NDR as the sought saddle



Fig. 11. The rR(a) and rI(a) curves in the vicinity of the branch point of the problem dispersion relation seen in the left top corner of
Fig. 7. The thick solid lines show the branch of a multi-valued dispersion relation chosen after an appropriate branch cut is introduced.
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point i.e., the branch shown by the thick solid lines in Fig. 11 should be chosen. The mapping of the cor-
responding branch cut then appears in Fig. 7 as a very dense cluster of isolines. This is just the way graphing
software attempts to represent the jump in rR values across the branch cut (see the gap in the top left corner
of Fig. 8 and the sudden change in the left sections of thick solid lines in Fig. 11). The presence of such
‘‘true’’ collisions may introduce two theoretical complications best seen from the point of view of the meth-
od of steepest descent [8]. Firstly, the required branch cut should be introduced in such a way that it does
not prevent the deformation of the original aI = 0 integration contour into the steepest descent path
through the saddle points. Secondly, if rR(ab) > 0 the branch point itself will contribute to the asymptotic
behavior of the system as the deformed contour must go around it so as not to cross the branch cut [5].
Therefore any reliable automatic numerical algorithm for searching CAIB should either have a mechanism
to account for the branch point contributions or at least signal their presence. Inspection of Fig. 11 shows
that a cusp of the rR(a) curve exists at a branch point which transforms into a minimum or leads to the
intersection of two rR(aR) curves in its vicinity. The existence of multiple maxima of the leading rR(a),
aI = 0 curve which are separated by minima then is an indication that the branch points exist in the prox-
imity of the aI = 0 line which should be accounted for. Finding the branch point of NDR in a complex
wavenumber space numerically is as challenging as finding a saddle point. Since at a branch point the deriv-
atives forming (5) are infinite one might try to find its location by minimizing the functional reciprocal to
(5) i.e., F�1 starting at the local minimum of the rR(a), aI = const. curve. This is how the accurate location
of a branch point was found for Fig. 11. In practice, it may be necessary to minimize the functional to a
certain finite level only (using the cR sorting) and then to finish the search by minimizing the distance
jrn � rn + 1j between the two closest eigenvalues in the NDR spectrum, where n corresponds to eigenvalue
numbering according to their real parts. The second stage might be necessary to avoid technical difficulties
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in approximating very large derivatives near the branch point. One also should be aware of possible diffi-
culties experienced by an eigenvalue solver and associated with its handling of eigenvalues of multiplicity
two. Finding the branch points of course adds a substantial extra cost to the procedure. In some cases it
could be argued that if the values of rR(a), aI = 0 curve at the minima points are negative then the branch
points also have rR(ab) < 0 so that their asymptotic contributions are negligible and the search of their ex-
act location in the complex wavenumber space is not required. No counter-examples invalidating this
assumption were found in the computations performed by the author or known to him from other pub-
lished studies. However it is not clear at this stage whether this statement is true in general. Therefore find-
ing branch points appears to be a more expensive but safer option. Fortunately, this still can be
accomplished automatically. For example, two minima of the rR(a) curve in Fig. 11 indicate that two
branch points exist near the aI = 0 axis. Both of them were successfully found using the discussed proce-
dure. One of these branch points has already been discussed in detail above and the other is found just
above the aI = 0 axis. It is formed by colliding thick solid line and the line marked by the ‘‘+’’ signs. How-
ever both branch points have rR < 0 and have no asymptotic contribution in this example.

Finally, note that the topological nature of the multiple relevant saddle points as those seen in Fig. 7
emerges in the light of the above discussion. They are signaled by the presence of multiple hills of the
rR(a) surface separated by valleys which indicate the existence of temporal branch points of a multi-valued
dispersion relation. This is the case in Fig. 7: the existence of two saddle points as1 and as2 arising from the
two maxima at am1 and am2 are due to the temporal branch point depicted in Fig. 11 while the additional
saddle point as3 in the lower half of the a plane is a consequence of a similar temporal branch point, but
located at a larger negative value of aI which is outside the range of Fig. 7.

3.4. Summary of a search procedure

In Sections 3.1–3.3, we discussed in detail major numerical difficulties in searching the transition between
the convective and absolute instability regimes most commonly found in spatio-temporal instability studies.
The combined procedure described in this paper, although not completely free from limitations discussed in
previous sections, suggests how to resolve them in a numerically more efficient and automatic way than
could be done by the previously known individual techniques on which it is based. Its major steps are sum-
marized below for convenience.

(a) The linearized disturbance equations are discretised and written in the form of a temporal instability
problem which results in a standard linear generalized matrix eigenvalue problem (2) for the complex
temporal amplification rate r.

(b) The physical governing parameters are fixed at some values and the leading eigenvalues are computed
using a standard (say, QZ) algorithm and stored for a sufficiently large range of real wavenumbers
including all values of a for which rR

j ðaÞ > 0.
(c) Wavenumbers corresponding to all positive maxima and all minima of real amplification rate curves

are identified and stored.
(d) The iterative saddle point search is repeatedly initiated at each of the maxima identified at step (c).

The search can use the Newton-type iterations driving the value of finite difference approximation
of a complex expression or

oa to zero. If the convergence cannot be achieved then initial iterations should
be attempted using a method not requiring numerical Jacobian such as a simplex method minimizing
functional (5). After the simplex method reduces the value of a functional to a reasonably small level
Newton iterations can be resumed.

(e) The tracking of a required Riemann sheet during the iterations is performed by sorting the numeri-
cally obtained eigenvalues in the decreasing order of parameter cR or, if it fails, by switching between
the ordering procedures based on the values of rR and rI.
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(f) After the saddle point location as is found in a complex wavenumber plane the eigenvalues are com-
puted for a range of complex wavenumbers along the path p � faI ¼ aIsg. Eigenvalues forming the
Riemann sheet containing the detected saddle point are identified using one of the eigenvalue tracking
procedures of step (e) and the corresponding curve rR(p) is examined. If it has minima or maxima
other than at as the iterative search is restarted at their locations to identify other saddle points which
might be present on a Riemann sheet of interest.

(g) If any minima are identified at step (c) the search of branch points is initiated at their locations by
minimizing the functional which is reciprocal to (5).

(h) After the saddle and branch points are located those of them with rR > 0 are identified. The asymp-
totic contribution of a branch point is computed as in [5]. The relevance of any saddle point is estab-
lished by examining the images of all temporal instability branches computed at step (b) and counting
the number of times the corresponding cusp point is covered by them (cusp point covered an odd
number of times is a genuine pinch point). If the dominant saddle point is found to be irrelevant
the next one with the second largest rR is examined.

(i) If the value of the absolute growth rate at the dominant saddle or branch point is nonzero the prob-
lem physical parameters are changed and all steps starting from (b) are repeated.

(j) The accurate value of physical parameters corresponding to CAIB are determined iteratively using,
for example, method of chords in multi-parameter space (while similar to Newton iterations the
method of chords does not require numerical Jacobian whose computations are too expensive for this
purpose). The iterations stop when the value of jrRjat a dominant pinch point is found to be smaller
than the prescribed accuracy.
4. Concluding remarks

Although the theory of convective and absolute instabilities is well understood by now, corresponding
numerical procedures remain challenging and computationally involved and frequently rely on the specifics
of an individual problem. The numerical inefficiency of such procedures is mainly caused by the need for
frequent human intervention i.e., visual inspection of intermediate results. Therefore it is crucial on a prac-
tical level to achieve a high degree of automatization of the complete computational process in order to
enable the determination of comprehensive transition boundaries between absolute and convective instabil-
ities in multi-parameter problems. An attempt was made here to develop such an algorithm which combines
the most efficient features of individual techniques previously reported by the current and other authors.
The suggested practical procedure is shown to resolve successfully the most common computational chal-
lenges of the CAIB computations some of which could not be handled by previously known algorithms
without human intervention and visual inspection. Yet it is possible that some less common situations still
cannot be handled in a fully automatic way by the suggested or any other previously known procedures.
For example, as discussed theoretically in [5] in addition to saddle points of r(a) other singularities of
the problem dispersion relation such as branch points or branch poles of r(a) can contribute to the spa-
tio-temporal behavior of a system. These were mentioned in the current paper, and a suggestion on how
to find them was formulated but not tested thoroughly. The reason for this is that although a sufficiently
comprehensive literature review was performed in Section 2, none of the studies cited there report such con-
tributions in physical problems. They were not found in any of the author�s own computations either and
thus appear to be rare in practice. A number of other singular situations are theoretically possible. However
since no physical examples where they have actually been found are reported in literature to date the author
did not focus on these issues and concentrated on the development of an automatic and numerically effi-
cient approach to comprehensive multi-parameter CAIB computations for more common situations. A
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comprehensive set of practical suggestions has been presented at least for the class of two-dimensional
problems whose asymptotic behavior is defined by a saddle point formalism. The procedure is shown to
work well in complicated physical examples. In most situations this success is warranted mathematically
as demonstrated in the original studies which present individual techniques forming a foundation of the
current procedure. However several cases for which no sufficient theory has yet been developed in literature
are flagged and qualitative conjectures are presented instead to support the suggested numerical steps.

The proposed automatic techniques for recognizing and tracking the relevant temporal branches of the
problem numerical dispersion relation can also be used for analysis of three-dimensional flows. It is also
hoped that analysis of three-dimensional problems with multiple saddle points can be performed in a
way similar to the one described here for two-dimensional flows (see [26] for an example of such an at-
tempt). However the topography of Riemann sheets parameterized by two complex wavenumbers is much
more diverse. Therefore the formulation of a procedure capable of catering for various possible situations
in three spatial dimensions is left for the future when a sufficient number of individual three-dimensional
investigations required for such a comprehensive case study are brought forward in publication.
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